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Journal of Computer SecurityIOS Press 1AUTHORIZATION IN DISTRIBUTED SYSTEMS:A NEW APPROACH1Thomas Y.C. Woo and Simon S. LamDepartment of Computer SciencesThe University of Texas at AustinAustin, Texas 78712-1188AbstractIn most existing systems, authorization is speci�ed using some low-level system-speci�cmechanisms, e.g., protection bits, capabilities and access control lists. We argue thatauthorization is an independent semantic concept that must be separated from imple-mentation mechanisms and given a precise semantics. We propose a logical approachto representing and evaluating authorization. Speci�cally, we introduce a language forspecifying policy bases. A policy base encodes a set of authorization requirements andis given a precise semantics based upon a formal notion of authorization policy. Thesemantics is computable, thus providing a basis for authorization evaluation.1 IntroductionTo guarantee the security of a distributed system, many concerns need to beaddressed. These include authentication, authorization, auditing, accountingand availability, among others. In this paper, we propose a new foundation forauthorization, speci�cally, one that is appropriate for the design and implemen-tation of distributed systems.The problem of authorization can be divided into two related subproblems:representation and evaluation. Representation refers to the speci�cation of au-thorization requirements, while evaluation refers to the actual determination ofthe authorities of subjects given the authorization requirements. The authority1This work was supported in part by NSA INFOSEC University Research Program undercontract no. MDA 904-92-C5150 and in part by National Science Foundation grant no. NCR-9004464. A preliminary version of this paper was presented in [37]. Published in Journal ofComputer Security, 1993. Postscript �les of this and other papers of the Networking ResearchLaboratory are available from http://www.cs.utexas.edu/�lam/NRL.



www.manaraa.com

2 Thomas Y.C. Woo and Simon S. Lamof a subject is its rights to access objects. (Thus our view of authorization islimited to access control; we do not consider issues of covert channels and secureinformation ow [7, 13, 22].)Conceptually, the rights of subjects to access objects can be stored in anaccess matrix [14, 20, 21], with rows corresponding to subjects, columns corre-sponding to objects, and matrix entries indicating various access rights. (Seeexamples in Section 3.) Practical implementations of an access matrix usuallytake advantage of the sparseness of the matrix, and are based upon capabili-ties (access rights stored by row), access control lists (access rights stored bycolumn), or some hybrid combination of these approaches [7, 9].Distributed systems and the prevalent client-server style of computing giverise to new problems in the speci�cation of authorization requirements. Forexamples:� New kinds of attributes need to be considered. For instance, an autho-rization requirement in a distributed system may include the location ofa subject as an attribute in addition to the identity of the subject. Thatis, it is possible that a subject U is authorized to update a �le F fromnode N but not from another node N 0. Other attributes include: the rolea subject is assuming, the groups a subject belongs to, any delegations asubject may have, and such.� A large-scale distributed system is typically composed of multiple inde-pendent domains, which are managed by possibly di�erent administrativeauthorities. In fact, even a single domain may have several security ad-ministrators. In these situations, authorizations in one domain may a�ectthose in other domains in unexpected ways. For instance, let X;Y and Zbe three independent domains within a distributed system administeredrespectively by authorities A;B and C. Suppose A authorizes requestsfrom Y to access resources in X but denies requests from Z. If B autho-rizes requests from Z to access resources in Y , such authorization wouldindirectly contradict the one by A, because a user in Z might be able toaccess resources in X by \going through" domain Y .Existing models of authorization have not been designed to address theseproblems [16, 23, 30]. Furthermore, existing approaches are unsatisfactory inthe following respect: authorization requirements can only be speci�ed usingsome low-level system-speci�c mechanisms. For example, in Unix, accesses tothe �le system are speci�ed by protection bits associated with each �le, andauthorization is determined by how these protection bits are set. Such embed-ding of authorization requirements into mechanisms presents serious drawbacks.First, authorization requirements are limited to those that can be speci�ed bythese low-level mechanisms. Second, the semantics of authorization is dependenton the semantics of the low-level mechanisms, which is not formally de�ned and
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Authorization in Distributed Systems: A New Approach 3indeed may vary from one implementation to another.2 This poses problems inlarge-scale distributed systems with heterogeneous implementations.For example, many people have recognized the limitations of protection bitsin Unix and have proposed various ad-hoc extensions to it. Each of these ex-tensions addresses one type of authorization requirements or another withoutsolving the above problems as a whole. Furthermore, there can be subtle interac-tions among these extensions, which may render a security administrator unableto comprehend what actually has been authorized.3 In fact, such confusion canbe a major source of security violations.The separation of policies from mechanisms has long been recognized as afundamental tenet in system design [18, 33]. A policy speci�es what is required,while a mechanism provides the actual enforcement. In the context of autho-rization, this means that a policy of authorization should have an independentsemantics that is separated from its implementation in system-speci�c mecha-nisms. To this end, we advocate a language-based approach to authorization.For representation, we need a language that is expressive enough for specify-ing commonly encountered authorization requirements. The language must begiven a formal semantics so that the meaning of an authorization requirementstated using the language can be precisely determined. This way, a securityadministrator is able to reconcile easily between what he intends to authorizewith what he has actually authorized.With this approach, authorization evaluation reduces to computation ofsemantics. The complexity of such computation is highly dependent on theparticular language used. The computation mechanism can range from a trivialtable lookup (e.g., if the language is simply an access matrix) to a full-edgedtheorem proving procedure (e.g., if the language is �rst order logic). In gen-eral, the more expressive the representation language, the more complex thecomputation mechanism. Thus issues of representation and evaluation must beexamined hand in hand with careful consideration of various tradeo�s.In this paper, we propose a new foundation for representing and evaluatingauthorization. Our contributions are as follows. We �rst identify three typesof structural properties inherent in authorization requirements. We argue thatsuch structural properties can be e�ectively exploited to reduce the complexityof representing and evaluating authorization in large-scale distributed systems.We introduce a representation language in which the structural properties canbe represented in a straightforward manner. The language is designed to specifypolicy bases. A policy base encodes a set of authorization requirements and isgiven a precise semantics based upon a formal notion of authorization policy.The semantics is computable via a translation to extended logic programs (see2A vivid example of this is the assortment of setuid/setgid function calls available indi�erent avors of Unix.3See for example [19] and the POSIX Security Draft Standard P1003.6 which discuss howto supplement Unix protection bits with access control lists.
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4 Thomas Y.C. Woo and Simon S. LamTheorem B in Section 7.3), thus providing a evaluation mechanism based on theinterpretation of extended logic programs.The balance of this paper is organized as follows. In Section 2, we compareour work to related research. In Section 3, we identify three types of structuralproperties in authorization requirements. In Section 4, we discuss languagerequirements for representing authorization. In Section 5, we present our modelof authorization. In Section 6, we introduce authorization policy as a semanticnotion. In Section 7, we introduce our language for specifying policy bases anddescribe its syntax and semantics as well as some guidelines for its usage. InSection 8, we provide some examples of policy bases, including the Bell-LaPadulamodel [3] and some inheritance rules. In Section 9, we discuss implementationconsiderations. This section is necessarily brief, and is intended only to give ageneral idea of how our framework can be put into practice. We are currentlybuilding a prototype implementation based on the ideas presented in this paper.The details of our implementation will be reported in a future paper. Lastly, inSection 10, we provide some concluding remarks.2 Relation to Other WorkBefore relating this paper to other work, we would like to emphasize severalpoints. First, our work is concerned with access control, and does not addressinformation ow control [4, 13, 28]. Thus, the typical concerns in most securitymodeling work [12, 13, 27, 29] are orthogonal to the ones in this paper. Inparticular, these references focus on modeling the abstract security propertiesof a system as a whole, while our work has a more narrow focus on authorizationonly.Second, the research reported in this paper is mainly concerned with repre-sentation and evaluation issues of static authorization requirements, which areto be satis�ed in each individual state. In other words, we do not model thedynamics of authorization. In this sense, the model we use and the issues weinvestigate are very di�erent from those studied in [16, 17, 25, 34, 35, 36]. Forexample, we do not study the problem of access rights propagation, commonlyknown as safety analysis [5, 6, 17]. Similarly, the creation and deletion of sub-jects and objects are not modeled within our framework. We stress, however,that this does not mean that our framework cannot be extended to handle theseissues. In this paper, we choose not to pursue these extensions because we areinterested in other issues.In relating this paper to previous work, we observe that the work by Lunt[26] is most relevant to us. She raised a similar question of ambiguity in theinterpretation of authorization policies. In particular, she examined di�erentinterpretations of denial and several conict resolution schemes. Her focus wasmore in identifying and understanding the problems. In this paper, we put forth
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Authorization in Distributed Systems: A New Approach 5speci�c constructs that allow an administer to explicitly specify and di�erentiatethese interpretations and schemes.The paper by Abadi, et al. [1] deals also with access control in a distributedsystem setting. They also make use of a logic, speci�cally, a modal logic to-gether with a calculus of principals. Their goal, however, is di�erent from ours.Their logic is used to explain the meaning of roles and delegation, and also theoperation of certain protocols. They do not study representation issues. Inparticular, the concept of a statement (standing for a speci�c access request) intheir logic is fully abstract (i.e., uninterpreted) [1, p. 725]. In some sense, ourwork is complementary to theirs in that we investigate the structure of thesestatements and provide meanings to them.Lastly, concrete models such as those proposed in [8, 15, 24] address the samegeneral concerns as ours, but for application-speci�c domains. Our frameworkcan be used as a general basis underlying their respective speci�c proposals.3 Three Types of Structural PropertiesAuthorization requirements are highly structured because the set of subjectsand the set of objects in a system are usually highly structured. For example,users belonging to the same working groups are likely to share similar autho-rizations; while objects pertaining to a common task are usually given similarauthorizations.To illustrate such structures, we look at some examples. Consider the au-thorization speci�ed by the following access matrix:P:src P:exe P:docA r;w e; w r; wB e rSubject A, who is the developer of software P , can read/write the source �leP:src, execute and write the executable �le P:exe, and read/write the documen-tation �le P:doc; while subject B, who is a user of P , is only allowed to executeP:exe and read P:doc. Certain structures in the authorization are readily ap-parent:(1) A, being the developer of P , must be able to update all of the �les relatedto P , i.e., A must have write access to all three �les. Similarly, B shouldbe allowed to read the documentation P:doc if he is allowed to executeP:exe.(2) Denials of access rights are represented implicitly by their absence in anentry. (Thus explicit denials are not possible and moreover, a denial isindistinguishable from a lack of information about an authorization.)
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6 Thomas Y.C. Woo and Simon S. LamWe call the structures exhibited in (1) closure properties among authoriza-tions. In general, a closure property stipulates that a set of authorizationsshould either be simultaneously authorized or denied, because a partial autho-rization produces an \unusable" system. Closure properties can be used toensure the \consistency" of authorizations as in the above example or to derivenew authorizations from existing ones.The structure exhibited in (2) is called a default property. A default propertycan be used as a convention to represent implicit knowledge as in the exampleabove (i.e., absence implies denial) or as a deduction rule when information isincomplete. In fact, most real systems employ default properties in one wayor another. For example, two kinds of policies are typically used: a restrictivepolicy is one whereby a request is denied unless explicitly authorized and apermissive policy is one whereby a request is always granted unless explicitlydenied. Both make use of default properties.We now turn to another example. Consider the authorization speci�ed bythe following access matrix (where, for an access right a, we use :a to denoteits explicit denial): F:1 F:2 F HA eG1 r w rG2 r :w :eSuppose A is a member of groups G1 and G2, and F:1 and F:2 are two compo-nents of an object F (e.g., two tables in a database). Several questions can beasked about the authorization:(1) G1 is authorized to read F:1. Is A, who is a member of G1, also authorizedto do the same? This is easy to resolve as both groups to which A be-longs are allowed to read F:1; hence, A should be authorized to read F:1.Consider now �le H for which only one of the two groups is authorized toread. Is A authorized to read H? The answer is not obvious. So is F:2for which G1 and G2 have been given opposite authorizations.(2) Consider object F . A is authorized to execute F . However, G2 to which Abelongs is explicitly denied the same access. Does the denial of G2 revokethe authorization of A? Or does A's explicit authorization override thedenial of G2?All of the above questions can be answered by precisely de�ning another kindof structural properties, called inheritance properties. Inheritance is especiallyimportant in large-scale distributed systems where the granularity of authoriza-tion ranges from an individual to an entire domain. Inheritance properties areused to relate authorizations speci�ed with these di�erent granularities.
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Authorization in Distributed Systems: A New Approach 7In sum, it is important that the structural properties described in this sec-tion be exploited to obtain succinct representation and e�cient evaluation ofauthorization requirements.4 Language RequirementsFrom the above discussions, a language for representing authorization require-ments should satisfy the following criteria:� It should be declarative and have a semantics that is independent of im-plementation mechanisms.� The semantics should be e�ciently computable, hence allowing e�cientauthorization evaluation.� It should allow easy expression of the closure, default and inheritanceproperties discussed in Section 3.In the following, we discuss four more requirements for such a language.First, authorization is nonmonotonic. That is, if a set of authorization re-quirements is augmented by a new requirement, a subject who was previouslyallowed access to an object may no longer be allowed the same access. A goodexample of such nonmonotonicity arises in the use of defaults. For example,suppose the set of authorization requirements includes the following default:if s is not explicitly denied read access to othen by default s is allowed read access to oIf the set of requirements is later augmented with an explicit requirement deny-ing s read access to o, the previous grant should be retracted. Thus, thesemantics of a language for authorization must allow such nonmonotonic be-havior.Second, authorization may be incomplete. That is, there may be authoriza-tion requests such that insu�cient information is available to determine if theyshould be granted or denied. Such incompleteness should be allowed in thesemantics of a language for authorization. There are two reasons:� An incompleteness may be the result of an oversight or error on the part ofsecurity administrators. Thus when an incompleteness is detected, it canserve as an alarm signalling potentially more serious problems. Therefore,it is advantageous that such incompleteness not be masked out automat-ically by the language semantics.
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8 Thomas Y.C. Woo and Simon S. Lam
Authorization ModuleSystem State

AuthorizationRequirements grant(r; s; o)fail(r; s; o)deny(r; s; o)req(r; s; o) Figure 1: Model of authorization� An incompleteness may be intentional so that it can be \�lled in" laterwhen composition is performed (see below). Thus, it is important thatsuch intentional incompleteness be allowed by the language semantics.Note that this strictly generalizes the idea of a reference monitor [9], where noincompleteness is allowed.Third, authorization may be inconsistent. That is, it is possible for an au-thorization request to be both granted and denied. The reasoning is similarto that of incomplete authorization: An inconsistent authorization may signalerrors on the part of security administrators or they can arise from the com-position of authorization requirements, especially in a large scale distributedsystem. Therefore, the semantics of a language for authorization must be ableto handle inconsistencies.Fourth, multiple authorities may coexist in a distributed system environ-ment. These authorities can be peers who coadminister a system or they canbe hierarchically related in a supervisor-subordinate fashion. Each of them maycontribute authorization requirements pertinent to the part of the system he isconcerned with. The authorization of the entire system is a composition of theseindividually contributed authorization requirements. Thus a language for au-thorization should include operators for composing authorization requirements.5 Our ModelOur model of authorization is shown in Figure 1. Before a subject s can performa particular access r on an object o, s must �rst obtain the access right r for o.
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Authorization in Distributed Systems: A New Approach 9Subject s does so by submitting a request of the form req(r; s; o) to the autho-rization module, which responds with grant(r; s; o), deny(r; s; o) or fail(r; s; o).A grant(r; s; o) is returned if the authorization module can determine that s isauthorized to have r access to o, while a deny(r; s; o) is returned if the autho-rization module can determine that s is denied r access to o. A fail(r; s; o) isreturned if the authorization module fails to establish either one of the previoustwo cases.To make an authorization decision, the authorization module consults theauthorization requirements and the system state. The system state is needed forauthorization requirements that contain system state variables as parameters.Some examples of this kind of authorization requirements are \At most 5 copiesof a program P can be running concurrently in all nodes of the system" and\User A is allowed to execute program P only if the current system load is lessthan 2".In our model, an authorization requirement is stated as a rule and a collectionof such rules constitutes a policy base (see Section 7). The authorizationmodule is an interpreter which takes as input a policy base B, the current systemstate, and a request req(r; s; o), and tries to verify that either grant(r; s; o)or deny(r; s; o) \follows" from the semantics of B given the current systemstate. If grant(r; s; o) follows, the request is granted. If deny(r; s; o) follows, therequest is denied. If neither follows, a fail(r; s; o) is returned. The pathologicalcase in which both grant(r; s; o) and deny(r; s; o) follow can be resolved byenforcing certain priorities between grants and denials. A precise de�nitionof the \follows" relation is given by a formal semantics of policy bases to bepresented below.Note that Figure 1 is actually a simpli�ed picture of our model. In gen-eral, the policy bases can be located in di�erent parts of a distributed system,and multiple instantiations of the authorization module can be running concur-rently across the system. More discussions on implementation are provided inSection 9.6 Authorization PolicyInformally, an authorization policy is the set-theoretic equivalent of an accessmatrix. Its precise meaning is de�ned in what follows.De�nition. An authorization policy (or policy in short) over a set of subjectsS, a set of objects O and a set of access rights R is a 4-tuple (P+; P�; N+; N�)where each component is a subset of f(r; s; o) j r 2 R; s 2 S; o 2 Og. 2The intuitive meaning of a policy A = (P+; P�; N+; N�) is as follows: P+records the rights that are explicitly granted, i.e., if (r; s; o) 2 P+, subject s is
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10 Thomas Y.C. Woo and Simon S. Lamexplicitly granted access right r to object o. Similarly, N+ records the rightsthat are explicitly denied. P� (N� respectively) records those rights that shouldnot be explicitly granted (denied respectively) under this policy. P� and N�are useful for de�ning the semantics of policy composition.A policy A = (P+; P�; N+; N�) is sound if there does not exist a triple t =(r; s; o) such that t 2 P+\P� or t 2 N+\N�. A policy A = (P+; P�; N+; N�)is strongly sound if it is sound and P+ \N+ = ;.A policy A = (P+; P�; N+; N�) is complete if for all s 2 S, o 2 O andr 2 R, (r; s; o) 2 P+ [ P� [ N+ [ N�. A policy A = (P+; P�; N+; N�) isstrongly complete if it is complete and both P� and N� are empty. Thus it issu�cient to represent a strongly complete policy with an ordered pair (P;N ).Given a strongly sound policy A = (P+; P�; N+; N�), we can de�ne threeauthorization relations between A and a triple (r; s; o):A grants (r; s; o) i� (r; s; o) 2 P+A denies (r; s; o) i� (r; s; o) 2 N+A fails (r; s; o) i� (r; s; o) 62 P+ [N+Authorization evaluation can proceed as follows: Given a request from asubject s for access r to an object o, grant(r; s; o) is returned if A grants (r; s; o),deny(r; s; o) is returned if A denies (r; s; o) and fail(r; s; o) is returned if A fails(r; s; o). Note that if A is also strongly complete, then fail(r; s; o) would neverbe returned.7 Policy BaseIn this section, we present a language for stating authorization requirementsin policy bases. The language is essentially a many-sorted �rst-order languagewith a rule construct. The rule construct is similar to the default construct indefault logic [32]; however, we give it a di�erent semantics. The rule constructis useful for stating structural properties of authorization requirements.From some domain-speci�c considerations, we impose several restrictions onthe kind of �rst-order formulas allowed. We briey describe the restrictions andtheir motivations:� We desire to have a computable semantics. As validity in an in�nitarytheory is typically semi-decidable, we restrict ourselves to �nitary theories.To achieve this, we do not allow function symbols in our language andpostulate only �nite sets of access-right, subject and object constants.This also allows us to eliminate quanti�cations.We note that this �niteness assumption only requires that at any particulartime, the sets of subjects, objects and access rights are �nite. It does not
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Authorization in Distributed Systems: A New Approach 11imply that the sets are �xed. In particular, subjects and objects can bedynamically created and deleted. However, we have chosen not to modelsuch creation and deletion in our present framework. Instead, our focusis on static authorization requirements.Furthermore, the �niteness assumption allows us to e�ectively reduce openpolicy bases into closed ones (see below). This is analogous to the so calleddomain closure or closed world assumption typically used in databaseresearch.� We allow the use of disjunction only in highly restricted ways. For ex-ample, we cannot state in our language the authorization requirement\Subject A is either allowed to read �le F or write �le G". Neither canwe state \There is a subject x who can read �le F" in our language. Ourview is that such disjunctive authorization requirements provide insu�-cient information for determining the exact extent of authorization.On a closer look, this limitation is not as restrictive as it seems. In a realis-tic authorization policy, disjunctive authorization requirements are statedmostly for convenience and their disjunctive nature is usually immedi-ately resolved when other requirements are taken into consideration. Thisis analogous to the case in classical logic where the statement A _ B whencombined with :A yields B, which is non-disjunctive. Purely disjunctiveauthorization requirements are rare and counterintuitive.7.1 SyntaxThe alphabet of our language is derived from the system to be modeled. Con-sider a system with S as its set of subjects, O its set of objects and R its setof access rights. (Note that S, O and R are all �nite sets.) We postulate thefollowing alphabet for our language:� a set of ordinary variables V,� a set of propositional variables P,� two propositional constants T and F,� a �nite set of subject constants S,� a �nite set of object constants O,� a �nite set of binary predicate symbols R = fr+; r� j r 2 Rg,� two special predicate symbols \=", and \2".
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12 Thomas Y.C. Woo and Simon S. LamThe set S (O) contains a constant symbol for each subject (object) in S (O).In other words, each subject or object in the system is explicitly represented bya constant symbol in the language.A term is an ordinary variable, a subject constant or an object constant. Anatom is a propositional constant, a propositional variable or a predicate p(t; t0)where p is a predicate symbol and t; t0 are terms. We adopt the convention ofwriting predicates involving = or 2 in the in�x form, i.e., we write =(t; t0) ast = t0 and 2(t; t0) as t 2 t0. An atom formed from a predicate symbol in R iscalled a distinguished atom; and the rest ordinary atoms.A literal is an atom or the negation of an atom. Negation is denoted by thesymbol :. A literal formed from a distinguished atom is called a distinguishedliteral, while a literal formed from an ordinary atom is called an ordinary literal.A literal is positive if it is an atom, and negative if it is the negation of an atom.Let a be an atom, then the two literals a and :a are called complementaryliterals. We de�ne a to be :a and :a to be a. Thus, ` and ` are alwayscomplementary for any literal `.A formula is a literal, a conjunction of two formulas f and f 0, denoted byf ^ f 0, or a disjunction of two formulas f and f 0, denoted by f _ f 0. A basic for-mula is a formula that only contains propositional constants and distinguishedliterals. A subclass of basic formulas that does not contain disjunctions is calledconjunctive formulas. Note that in our formulas, unlike those of �rst order logic,negation occurs only at the level of literals. A formula is closed if it does notcontain ordinary variables, otherwise it is open.A rule is written in the form f : f 0g where f is a formula, f 0 a basic formulaand g a conjunctive formula. f; f 0 and g are respectively called the prerequisite,assumption and consequent of the rule.Notation. To simplify our presentation, we introduce a syntactic operatorneg for basic formulas. The de�nition of neg is as follows:� neg(T) is F,� neg(F) is T,� neg(f) is f , if f is a literal,� neg(f1 ^ f2) is neg(f1) _ neg(f2),� neg(f1 _ f2) is neg(f1) ^ neg(f2).Thus the e�ect of the neg operator is similar to that of applying negation tothe entire basic formula and then pushing it inward using De Morgan's law. 2Convention. To be succinct, we use several abbreviations. First, if anycomponent formula is missing from a rule, it is assumed to be T. Second, we
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Authorization in Distributed Systems: A New Approach 13use the notation f ) g to represent a rule of the form f : Tg . Third, T ) g isfurther abbreviated to g. 2Example 1. Let V = fx; y; : : :g, P = fp; qg, S = fA;B;Gg, O = fX;Y;Zg,and R = fread;writeg. Then the following are rules:read�(G; x)read+(A;X) ) read+(A;Y)x 2 G ^ read�(G;Y) ) read�(x;Y):p _ write+(x;Z) ) :read+(x; y)p ^ read+(x;Z) : read+(x;Y)read+(x;Y)x 2 G ^ write+(G; y) :write+(x; y) ^ :write�(x; y)write+(x; y) 2De�nition. A policy base (or base in short) is a �nite set of rules. 2A rule f : f 0g is closed if f , f 0 and g are all closed; otherwise it is open. A ruleis pure if f is also a basic formula. A base is closed if it contains only closedrules. A base is pure if it contains only pure rules.7.2 Semantics for Closed Policy BaseWe present a semantics for closed bases here. The semantics for open bases is inSection 7.4. Every mention of base in this subsection is taken to mean a closedbase unless explicitly stated otherwise.The semantics of a base is given by its extensions. An extension is a set ofdistinguished literals4. An extension provides a straightforward interpretationfor distinguished literals: such a literal is true if and only if it is contained inthe extension. An extension is similar in concept to a model in the standardsemantics for classical logic.An extension naturally de�nes a policy. More precisely, let � be an extensionand let P+ = f(r; s; o) j r+(s; o) 2 �gP� = f(r; s; o) j :r+(s; o) 2 �gN+ = f(r; s; o) j r�(s; o) 2 �gN� = f(r; s; o) j :r�(s; o) 2 �g4An extension is similar to a Herbrand base except that it contains literals instead of justatoms.
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14 Thomas Y.C. Woo and Simon S. LamClearly, (P+; P�; N+; N�) is a policy. We call it the policy de�ned by �, anddenote it by �(�). This establishes a one-one correspondence between an ex-tension and a policy.To provide meanings for ordinary literals, we use an assignment functionI : P 7! ftrue; falseg and a group relation G. An assignment function providesinterpretation for propositional variables, while a group relation provides inter-pretation for the predicate \2"; they together model the system state. Theequality predicate \=" is interpreted as the identity relation. We also adopt theunique names assumption, i.e., c 6= c0 for all c; c0 in S [ O.Before we give our de�nition for extension, we �rst de�ne a satisfactionrelation between a set � of distinguished literals and a closed formula f withrespect to an assignment I and a group relation G. We denote the satisfactionrelation by � j=I;G f . The de�nition is by structural induction:� f is a propositional constant, then� j=I;G f i� f is T� f is a propositional variable, then� j=I;G f i� I(f) = true� f is t = t0, then� j=I;G f i� t � t0� f is t 2 t0, then� j=I;G f i� (t; t0) 2 G� f is a distinguished literal L, then� j=I;G f i� L 2 �� f is :f 0 where f 0 is an ordinary atom, then� j=I;G f i� � 6j=I;G f 0� f is f1 ^ f2, then� j=I;G f i� � j=I;G f1 and � j=I;G f2� f is f1 _ f2, then� j=I;G f i� � j=I;G f1 or � j=I;G f2It should be clear that for a basic formula f , the satisfaction relation is inde-pendent of I and G. More precisely, let f be a basic formula, I; I 0 assignments,G;G0 group relations and � a set of distinguished literals. Then � j=I;G f i�� j=I0;G0 f . We would abbreviate j=I;G to j= in this case.Note that our semantics is di�erent from the standard semantics for classicallogic in several ways. First, F ^ :F represents a contradiction in classical logicand hence does not admit any model. In our case, we have fF;:Fg j=I;G F^:F .Second, in classical logic, if � satis�es both F _ G and :F , then it must also
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Authorization in Distributed Systems: A New Approach 15satisfy G. This is not true in our semantics as fF;:Fg j=I;G F _ G andfF;:Fg j=I;G :F , but fF;:Fg 6j=I;G G. A semantics that exhibits such non-classical behavior is often called paraconsistent.Given a base, we are now ready to de�ne its extensions. Let B be a base, Ian assignment and G a group relation. We de�ne an operator �B;I;G that givena set of distinguished literals, returns a new set of distinguished literals. Theformal de�nition of �B;I;G is as follows: Let � be a set of distinguished literals.De�neSI;GB;� = (M ���� M is a set of distinguished literals andfor all f : f 0g 2 B, if M j=I;G f and � 6j= neg(f 0) then M j= g )then �B;I;G(�) = the intersection of all elements in SI;GB;�The intuitive meaning of a rule f : f 0g is as follows: If a set � of distinguishedliterals satis�es f , and there is no evidence that the negation of f 0 is satis�ed(hence it is consistent to assume that � satis�es f 0), then � must also satisfyg. Note that both neg(f 0) and g are basic formulas. Hence we write j= insteadof j=I;G in the condition for SI;GB;�.In the case that B is a pure base, it should be clear from the above de�nitionsthat SI;GB;� and hence the operator �B;I;G are independent of I and G. That is,SI;GB;� = SI0;G0B;� �B;I;G(�) = �B;I0;G0(�) for any set of distinguished of literals �.In the following, we would denote them respectively by SB;� and �B .We also make the following observation: LetCON (B) = �g ���� f : f 0g 2 B�Then each element of SI;GB;� is a subset ofCON (B). Hence �B;I;G(�) � CON (B).Note that CON (B) is �nite, as B is �nite.De�nition. Let B be a base, I an assignment, G a group relation and � a setof distinguished literals. � is an extension of B under I and G if � = �B;I;G(�),i.e., � is a �xed point of the operator �B;I;G . 2In the case of a pure base, the �xpoints are independent of the assignmentand the group relation. Therefore, we can just refer to them as extensions of B.From the above observation that �B;I;G(�) is a subset of CON (B) and thatCON (B) is �nite, a simple procedure for �nding all extensions of a base B is
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16 Thomas Y.C. Woo and Simon S. Lamto enumerate all subsets of CON (B) and check each one for satisfaction of the�xed point equation.Since each extension of a base de�nes a policy, in the case that B admits aunique extension � under I and G, the policy de�ned by � can be taken to bethe semantics of B under I and G. We formalize this in the following de�nition.De�nition. Let B be a base, I an assignment and G group relation. SupposeB admits a unique extension � under I and G. Then �(�), the policy determinedby B under I and G, will be denoted by EI;G(B). 2The authorization relations introduced in Section 6 can be naturally ex-tended to a base as follows. (Note that this is well de�ned only when EI;G(B)itself is well-de�ned and is a strongly sound policy.)De�nition. Let B be a base, I an assignment and G group relation. Lets 2 S, o 2 O and r 2 R:B grants (r; s; o) under I;G i� EI;G(B) grants (r; s; o)B denies (r; s; o) under I;G i� EI;G(B) denies (r; s; o)B fails (r; s; o) under I;G i� EI;G(B) fails (r; s; o)These three relations represent the authorization de�ned by a base B, and aretaken to be its semantics. 2Clearly, the above semantics is well-de�ned only when B admits a uniqueextension under I and G. However, as shown in the examples below, this uniqueextension property is not true in general.Example 2. Consider the baseB1 = � : read+(A;X) ^ :read+(A;Y)read+(A;X) ; : read+(A;Y) ^ :read+(A;Z)read+(A;Y) ;: read+(A;Z) ^ :read+(A;X)read+(A;Z) �B1 does not admit any extension under all assignments and group relations.This can be shown as follows. First,CON (B1) = �read+(A;X); read+(A;Y); read+(A;Z)	
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Authorization in Distributed Systems: A New Approach 17Any extension of B1 must be a subset of CON (B1). We check each such subsetto see if it satis�es the �xed point equation. We group these subsets into fourcases: (1) The empty set. We have �B1(;) = CON (B1) 6= ;. (2) The single-ton sets: �1 = fread+(A;X)g, �2 = fread+(A;Y)g or �3 = fread+(A;Z)g.For �1, we have �B1(�1) = �1 [ �2 6= �1. The calculations for �2 and�3 are similar. (3) The two-element sets: �4 = fread+(A;X); read+(A;Y)g,�5 = fread+(A;Y); read+(A;Z)g or �6 = fread+(A;Z); read+(A;X)g. For �4,we have �B1 (�4) = �2 6= �4. The calculations for �5 and �6 are similar. (4)The set CON (B1). We have �B1(CON (B1)) = ; 6= CON (B1).Since B1 contains no ordinary literal, the assignment or group relation can-not be the cause of its lack of an extension. 2Example 3. Consider the baseB2 = � : :write+(A;X)write+(A;Y) ; : :write+(A;Y)write+(A;X) �B2 admits two extensions fwrite+(A;Y)g and fwrite+(A;X)g under all assign-ments and group relations. 2Example 4. Consider the baseB3 = �read+(A;X); p ^ read+(A;X) : :write�(A;Z)write�(A;Z) �If I(p) = false then fread+(A;X)g is an extension. However if I(p) = true, B3does not admit any extension. This can be easily explained by the fact that theassumption and the consequent of the second rule are inconsistent. Thus I andG do a�ect the extensions (if any) of a base. 2Although these examples demonstrate that the unique extension propertyis not true in general, they also serve to illustrate a common underlying causefor failure. In the above examples, there is a kind of circularity in the rulesinvolving atoms that occur both positively and negatively. For instance, in Ex-ample 3, each of the atoms write+(A;X) and write+(A;Y) occurs positively inthe consequent of one rule but negatively in the assumption of the other rule.The application of one rule would necessarily disable the application of theother rule, thus resulting in two di�erent extensions. However, if priorities areenforced between the two rules (e.g., the derivation of write+(A;X) is more \im-portant" than the derivation of write+(A;Y)), then only fwrite+(A;X)g wouldbe considered an extension of B2. This idea can indeed be generalized and anotion of strati�cation can be de�ned on the set of distinguished atoms, suchthat a strati�ed base always possesses a unique extension. We omit the detailshere and refer the readers to [2, 10, 31].
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18 Thomas Y.C. Woo and Simon S. LamThe semantics of a base can also be given by �rst \factoring out" the e�ectsof assignments and group relations. We formalize this below.Let f be a formula, I an assignment and G a group relation. Suppose weapply the following transformation to f :� replace all occurrences of p in f by T if I(p) = true and F otherwise� replace all occurrences of t 2 t0 in f by T if (t; t0) 2 G and F otherwise� replace all occurrences of t = t0 in f by T if t � t0 and F otherwiseWe denote the resulting formula by [I;G](f). It should be clear that if f is abasic formula, [I;G](f) � f .Next, we extend the transformation to a rule. Let d = f : f 0g be a rule. Wede�ne: [I;G](d) = [I;G](f) : [I;G](f 0)[I;G](g) � [I;G](f) : f 0gThe last equality is due to the fact that f 0 and g are basic formulas. Note that[I;G](d) is pure. Lastly, we de�ne[I;G](B) = f[I;G](d) j d 2 BgClearly, [I;G](B) is a pure base.Theorem A. Let B be a base, I an assignment and G a group relation. Let� be a set of distinguished literals. Then� is an extension of B under I and G i� � is an extension of [I;G](B)Proof. See Appendix A. 27.3 Computation of EI;G(B)For our semantics, authorization evaluation reduces to the computation of EI;G(B).In this subsection, we present a semantics-preserving translation of a base B intoan extended logic program �B, thus reducing the computation of EI;G(B) to thecomputation of �B [11].We �rst introduce the concept of an extended logic program. An extendedprogram clause is a statement of the form:L  L1; : : :; Ln; not Ln+1; : : :; not Lm
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Authorization in Distributed Systems: A New Approach 19where L and the Li's are literals. An extended logic program is a �nite collectionof extended program clauses. Extended logic programs are a strict superset ofgeneral logic programs, because literals rather than just atoms are allowed inthe program clauses.For extended logic programs, we have developed a paraconsistent semantics(expressed in terms of models) using ideas from stable model construction [10].Our semantics is an extension to the one proposed in [11], and is similarlycomputable via reduction to general logic programs. A review of this semanticsis given in Appendix B.The essence of our approach is to translate a base into an extended logicprogram as follows: Let B be a base and let d � f : f 0g be a rule in B. Wetranslate d into the extended program clauseg  f ^ not(neg(f 0))where not is an operator with a de�nition similar to neg:� not(T) is F,� not(F) is T,� not(h) is not h, if h is a literal,� not(h1 ^ h2) is not(h1) _ not(h2),� not(h1 _ h2) is not(h1) ^ not(h2).We denote by �B the extended program obtained by applying the above trans-lation to each rule in B.Theorem B. Let B be a pure base and � a set of distinguished literals. Then� is an extension of B i� � is a model of �BProof. See Appendix C. 2Corollary C. Let B be a base, I an assignment and G a group relation. Let� be a set of distinguished literals. Then� is an extension of B under I and G i� � is a model of �[I;G](B)Proof. Immediate from Theorem A and Theorem B. 2
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20 Thomas Y.C. Woo and Simon S. Lam7.4 Semantics for Open Policy BaseLet B be an open base. We view each open rule in B as standing for all itsground instances. In other word, let d(�x) be a rule whose free variables are �x.d(�x) should actually be understood as representing the set of closed rulesfd(�c) j �c is a ground substitution for �xgFor example, if S = fA;Bg and O = fX;Yg, then the open rulewrite+(x;X) : read+(x; y)read+(x; y)stands for the following set of closed rules:�write+(A;X) : read+(A;X)read+(A;X) ; write+(A;X) : read+(A;Y)read+(A;Y) ;write+(B;X) : read+(B;X)read+(B;X) ; write+(B;X) : read+(B;Y)read+(B;Y) �Thus each open base B can be associated with an \equivalent" closed base B0.The semantics of B is de�ned to be the same as that for B0.7.5 Application GuidelinesHaving de�ned the syntax and semantics of policy bases, we now turn to thepractical aspects of specifying policy bases. In particular, we provide someguidelines for representing the three kinds of structural properties discussed inSection 3.Consider a rule f : f 0g . Its intuitive meaning is that the authorization speci�edby g is allowed if the authorization speci�ed by f is allowed and no authorizationcontradicting f 0 has been speci�ed. Informally, f speci�es some prerequisiteauthorization required for g, while f 0 speci�es assumptions that can be used todeduce the authorization speci�ed by g. In the following, we discuss di�erentforms of our rule and show how they can be used.Consider a rule of the form T : Tg , or simply g. Such a rule expresses basicauthorization requirements that must be satis�ed in a system. There is noprerequisite nor assumption. For example, to say that a user A must be able toread and write his home directory, we write:read+(A;A:home) ^ write+(A;A:home)where A.home denotes user A's home directory. These basic authorization re-quirements form the core upon which other authorizations can be deduced.
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Authorization in Distributed Systems: A New Approach 21A rule of the form f : Tg , or simply f ) g, can be used for two purposes. First,it can be used to express a closure property between authorization requirements.For example, consider the rule:execute+(x;P:exe) ) read+(x;P:doc)which says that a user who is authorized to execute a program P.exe should alsobe allowed to read its associated documentation P.doc.Another use of the above rule is to de�ne new authorization requirements interms of others. For example, in Unix, the right to delete a �le is equivalent tothe right to write the directory containing the �le. This can be made explicitas: write+(x; d) ^ f 2 d ) delete+(x; f)where f and d are variables standing for a �le and a directory respectively.Rules can also be used to represent implicit authorizations. There are severalreasons why an authorization is left implicit. First, it can be a convention.For example, in general, the number of negative authorizations in a system farexceeds the number of positive ones. Thus for e�ciency, a security administratormay specify only the positive ones and leave the negative ones implicit. In otherwords, the convention is that if a right has not been explicitly authorized, then itis denied. This convention can be formalized in a policy base with the followingschema: : r�(s; o)r�(s; o)where r 2 R.An inheritance property is another example of implicit authorizations thatcan be formalized as rules. An example is given in Section 8.7.6 Specifying ExceptionsIn the following, we explore several strategies to specify exceptions. We �rstintroduce the concept of virtual rights. Virtual rights are not access rights perse, but are introduced for stating exceptions. We explain this with an example.Suppose we have the following authorization requirements:(1) User A is not allowed to write �le X. (2) A user who is notallowed to write �le X is also not allowed to read X except for thosewho belong to group G and those who can read �le Y.As a �rst attempt, we can express this as two rules:write�(A;X)write�(x;X) ^ :(x 2 G) ^ :read+(x;Y) ) read�(x;X)
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22 Thomas Y.C. Woo and Simon S. LamClearly, these rules correctly represent the requirements. However, they areinexible and error prone in the following sense: They require every exceptionto be known and be included in the left hand side of the second rule. Thus fora subject whose exception status is unknown (e.g., subject A above), it will notbe explicitly denied the right to read X.A better way to represent this would be to introduce a virtual right exceptto represent exceptions and a rule to limit exceptions to the ones explicitlyspeci�ed. B4 =8>>>>><>>>>>: write�(A;X)write�(x;X) ^ :except+(x;X) ) read�(x;X)x 2 G ) except+(x;X)read+(x;Y) ) except+(x;X)::except+(x;X):except+(x;X) 9>>>>>=>>>>>;Subject A is denied read access to X by the second rule in B4. This is the casebecause A is assumed to be not an exception by the last rule in B4. Thus thisspeci�cation errs on the safe side from a security viewpoint.Another way of stating the same requirements without using the virtual rightexcept is the following.B5 = 8>>><>>>: write�(A;X)x 2 G ) :read�(x;X)read+(x;Y) ) :read�(x;X)write�(x;X) : read�(x;X)read�(x;X) 9>>>=>>>;The main di�erence between B4 and B5 is that in B4, we only have su�cientconditions for exceptions while in B5, we can conclude that :read�(x;X) holdsfor all excepted individuals.Yet another way to specify the requirements, one that can be viewed as ahybrid of B4 and B5, is the following.B6 =8>>><>>>: write�(A;X)x 2 G ) except+(x;X)read+(x;Y) ) except+(x;X)write�(x;X) ::except+(x;X)read�(x;X) 9>>>=>>>;B6 is similar to B4 in that only su�cient conditions for exceptions are speci-�ed. However, for any subject, such as A, who is not explicitly speci�ed as anexception, its exception status remains unknown.Although B4, B5 and B6 are di�erent with respect to what can be concludedabout the excepted individuals, they all have the same semantics with respectto write� and read�. In particular, read�(A;X) holds in each case.
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Authorization in Distributed Systems: A New Approach 238 Examples of Policy BasesIn this section, we present two examples of using policy bases to specify autho-rization requirements. The �rst example is the Bell-LaPadula model (BLP) [3].We present a straightforward formulation of the basic BLP model in the policybase notation and also an enhancement with need-to-know restrictions. Thesecond example shows how to formalize inheritance properties (as illustrated byexamples in Section 2).The essence of the basic BLP model can be summarized by two rules, \noread up and no write down". To simplify our presentation, we consider onlytwo security levels low and high. We specify the BLP model as follows:BLP = R� [W� [R+ [W+where(No Read Up) R� = fs 2 low ^ o 2 high ) read�(s; o)g(No Write Down) W� = fs 2 high ^ o 2 low ) write�(s; o)g(Can Read Down) R+ = fo 2 low ) read+(s; o)g(Can Write Up) W+ = fs 2 low ) write+(s; o)gIn the above, denials are absolute in the sense that no exception is allowed.Given a complete description of the group relation, the above policy base uniquelyde�nes a strongly sound and strongly complete authorization policy that satis-�es the simple and ?-security properties [3].However, this basic model su�ers from two drawbacks. First, the grouprelation must be completely de�ned in order to give a strongly complete autho-rization policy. Second, although positive authorizations that are granted dosatisfy the simple and ?-security property, they violate the principle of minimalprivileges [33].We remedy this by adding need-to-know restrictions and denials by default.We modify R+ and W+ to be (respectively)R0 = fo 2 low ^ need-to-know+(s; o) ) read+(s; o)gW 0 = fs 2 low ^ need-to-know+(s; o) ) write+(s; o)gand BLP to be BLP 0 = R� [W� [R0 [W 0 [Dwhere D is
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24 Thomas Y.C. Woo and Simon S. Lam� : read�(s; o)read�(s; o) ; : write�(s; o)write�(s; o) ; : :need-to-know+(s; o):need-to-know+(s; o) �The virtual right need-to-know formalizes the need-to-know restrictions and canbe de�ned in terms of compartments of subjects and objects using other rules.We now turn to our second example. Consider the following inheritanceproperties:(1) If a subject s has not been explicitly granted a right r to an objecto, then s will inherit a denial of r to o if it belongs to a group g thathas a denial of r to o. (2) If a subject s has not been explicitly denieda right r to an object o, then s will inherit a grant of r to o if allgroups to which s belongs have grants of r to o.These can be expressed respectively by the following schemas:d1 = s 2 g ^ r�(g; o) : :r+(s; o) ^ r�(s; o)r�(s; o)and d2 = 8 g[:(s 2 g) _ r+(g; o)] : r+(s; o) ^ :r�(s; o)r+(s; o)where 8 g[f(s; g; o)] in d2 is a shorthand for the conjunction of all formulas ofthe form f(s;G; o) where G 2 S.9 Implementation ConsiderationsOur model can be implemented as follows in a distributed system. Each policybase is stored and managed by a node in the system. We call such a nodea policy server. These policy servers are organized in a hierarchical manner.Policy servers at the same level are called peers. Clients submit their accessrequests to appropriate policy servers for authorization decisions. The policyservers communicate with each other in authorizing an access request.The assignment function used in interpreting propositional variables is im-plemented by a set of distributed monitors that keep track of the status ofpropositional variables.The group relation is implemented by a set of group servers that collectivelymaintain group membership information for all subjects and objects in the sys-tem. Thus all updates of group memberships (e.g., additions and deletions) inthe system are handled by the group servers.
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Authorization in Distributed Systems: A New Approach 25Both the distributed monitors and group servers are regularly queried bythe policy servers in making authorization decisions. The evaluation mechanismused in each policy server is based on an interpreter for general logic programs.In fact, a suitably modi�ed Prolog interpreter is su�cient.A preliminary design of a distributed authorization service based on theideas presented in this paper is given in [38].10 Concluding RemarksWe have presented a new approach to representing and evaluating authorization.In our approach, a set of authorization requirements is speci�ed declaratively bya policy base. Unlike most existing approaches, the semantics of authorizationis de�ned independently and is separate from implementation mechanisms.Our approach is readily extensible. New predicate symbols can be added toour representation language to increase its expressiveness without a signi�cantincrease in computational requirements.The existence of multiple authorities can be modeled in our approach bythe use of suitable composition operators. Our research suggests that there aretwo notions of composition for policy bases that are important in a distributedsystem environment.First, a system may be administered by multiple security administrators,each responsible for a distinct part of the system. Each security administratorspeci�es a policy base for the part of the system he is responsible for. In thiscase the di�erent policy bases complement each other, in the sense that each�lls in a part that has not been speci�ed by others. Thus a composition givesthe \sum" of all authorization requirements in the policy bases. We call thistype of composition peer or horizontal composition.Second, a security administrator may delegate his responsibilities to a num-ber of subordinate administrators. This gives rise to a root policy base cor-responding to the delegating administrator and a number of leaf policy basescorresponding to the subordinate administrators. The leaf policy bases are morespeci�c and detailed than the root policy base and typically contain re�nementsof the root policy base. Composition in this case would combine all of the au-thorizations present in the root policy base together with their re�nements inthe leaf policy bases. We call this type of composition hierarchical or verticalcomposition.The key di�erence between horizontal and vertical compositions is in theirresolution of conicts. A formal de�nition of these operators and their propertiesare still under investigation. Some preliminary ideas have been given in [37].We are building a prototype implementation of the ideas in this paper. As welearn from our implementation experience, we may further re�ne our language
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30 Thomas Y.C. Woo and Simon S. LamM 2 SI;GB;�i� f de�nition of SI;GB;� gfor all f : f 0g 2 B, if M j=I;G f and � 6j= neg(f 0) then M j= gi� f Lemma 1, f 0 and g are basic formulas gfor all f : f 0g 2 B, if M j= [I;G](f) and � 6j= [I;G](neg(f 0)) then M j= [I;G](g)i� f replacing [I;G](h) by h and de�nition of [I;G](B) gfor all f : f 0g 2 [I;G](B), if M j= f and � 6j= neg(f 0) then M j= gi� f de�nition of S[I;G](B);� gM 2 S[I;G](B);� 2Theorem A. Let B be a base, I an assignment and G a group relation. Let� be a set of distinguished literals. Then� is an extension of B under I and G i� � is an extension of [I;G](B)Proof. � is an extension of B under I and Gi� f de�nition of extension g� = �B;I;G(�)i� f de�nition of �B;I;G(�) g� = the intersection of all elements in SI;GB;�i� f Lemma 2 g� = the intersection of all elements in S[I;G](B);�i� f de�nition of �[I;G](B)(�) g� = �[I;G](B)(�)i� f de�nition of extension g� is an extension of [I;G](B) 2B A Paraconsistent Semantics for ExtendedLogic ProgramsIn the following, a literal refers to a distinguished literal.
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Authorization in Distributed Systems: A New Approach 31B.1 ProgramsA program formula (or formula in short) is:� T or F� a literal� f ^ f 0 where f and f 0 are formulas� f _ f 0 where f and f 0 are formulasNote that negation occurs only at the literal level, and not at the formula level.A conjunctive formula is a formula without disjunction.A program clause (or clause in short) is f  g where f is a conjunctiveformula and g a formula. g is called the premise while f the consequence of therule. A closed rule is a rule that does not have any free variables. A program isa set of clauses. A closed program is a program containing only closed clauses.We consider only closed clauses and closed programs in the sequel. Thus, allmentions of clauses and programs are assumed to be closed.We want to de�ne the concept of a model for a program. To do this, we�rst de�ne a satisfaction relationship between a set of literals and a formula orclause.Let � be a set of literals. We have:� � j= T� � 6j= F� � j= L i� L 2 � where L is a literal� � j= f ^ f 0 i� � j= f and � j= f 0� � j= f _ f 0 i� � j= f or � j= f 0� � j= f  g i� � j= g implies � j= fWe observe that the above de�nition for j= when restricted to programformulas is identical to the de�nition of j=I;G for formulas without ordinaryliterals.De�nition. Let � be a program. � is a model of � i� for all clause r 2 �,� j= r. 2Note that the set of all literals is always a model of any positive program �.
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32 Thomas Y.C. Woo and Simon S. LamProposition. Let � be a program. Then the intersection of all models of �is also a model of �. 2Corollary. For any program �, there exists a least model of �. 2We denote the least model of program � byM�. Thus,M� = is the smallestset � such that for each clause r 2 �, � j= r. Note that M� is computableby a \bottom up" evaluation. More precisely, let �0 = ;, and let �i+1 be thesmallest set such that (1) it includes �i and (2) for every clause f  g 2 �,if �i j= g then �i+1 j= f . If there exists an i such that �j = �i, for all j � i,then M� = �i.B.2 Extended ProgramsAn extended literal is L or not L where L is a literal. An extended programclause (or extended clause in short) is constructed exactly like a clause exceptthat extended literals are allowed in the premise of the rule in place of literals.An extended program is a set of extended clauses.We want to de�ne an analogous notion of model for an extended program.To do that, we �rst de�ne a reduction from an extended program to a program.Let � be a set of literals and r an extended clause. We de�ne an operation ��that transforms r into a regular clause. The de�nition of �� is as follows:� replace all occurrences of not T in r with F,� replace all occurrences of not F in r with T,� replace all occurrences of not L in r with F if L 2 �,� replace all occurrences of not L in r with T if L 62 �.The resulting clause is denoted by ��[r]. Note that since extended literals areonly allowed in the premise of a clause, so �� can be viewed as an operationon formulas instead of clauses. This view will be used later on.Let �� denote the program obtained from an extended program � by ap-plying �� to each clause in �. That is, �� = f��[r] j r 2 �g.De�nition. � is a model of � i� � = M��. 2While an extended program may have zero, one or multiple models, thereare syntactic characterizations of extended programs that admit unique models.For example, the existence of a strati�cation [2] is one such characterization.
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Authorization in Distributed Systems: A New Approach 33C Proof of Theorem BIn the following, a literal refers to a distinguished literal. Note also that aprogram formula has the same syntax as a formula in a pure rule. Hence in thefollowing, a formula is interpreted according to its context.Lemma 3. Let � be a set of literals and f be a formula. Then� 6j= f i� ��[not(f)] � Twhere � denotes the usual logical equivalence.Proof. By induction on the structure of formulas. 2Lemma 4. Let � be a set of literals and f be a formula. Then for any setM of literals M j= ��[not(f)] i� ��[not(f)] � TProof. By induction on the structure of formulas. 2Lemma 5. Let B be a pure base. Then for any set � of literals�B(�) = M(�B)�Proof. Before we begin the proof, we make the following observation: By def-inition, all clauses in (�B)� are obtained from the clauses in �B. In particular,we have: r 2 �B i� ��[r] 2 (�B)�Now since �B is the extended program obtained by translation from base B,all clauses in �B are of the following formg  f ^ not(neg(f 0))Hence, all clauses in (�B)� are of the formg  ��[f ^ not(neg(f 0))]which simpli�es to g  f ^ ��[not(neg(f 0))]
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34 Thomas Y.C. Woo and Simon S. Lamas both f and g do not contain extended literals.To summarize, we havef : f 0g 2 B i� g  f ^ not(neg(f 0)) 2 �Bi� g  f ^ ��[not(neg(f 0))] 2 (�B)� (�)Now back to the proof, we prove the equality by showing subset inclusion inboth directions.(a) �B(�) �M(�B)� .If we can prove M(�B)� 2 SB;�, then by the fact that �B(�) is the least elementof SB;�, we obtain the desired inclusion. In the following, we prove M(�B)� 2SB;� by showing it satis�es the condition for being an element of SB;�.First, from the fact that M(�B)� is the least model of (�B)�, we have:For all clause g  f ^ ��[not(neg(f 0))] 2 (�B)�,M(�B)� j= f and M(�B)� j= ��[not(neg(f 0))] implies M(�B)� j= gBy (�) and Lemma 4, we get:For all rule f : f 0g 2 B,M(�B)� j= f and ��[not(neg(f 0))] � T implies M(�B)� j= gThen by Lemma 3, we get:For all rule f : f 0g 2 B,M(�B)� j= f and � 6j= neg(f 0) implies M(�B)� j= gwhich is exactly the condition for being an element of SB;�.(b) M(�B)� � �B(�).If we can prove that �B(�) is a model of (�B)�, then by the fact that M(�B)�is the least model of (�B)�, we obtain the desired inclusion. In the following,we show that �B(�) satis�es the condition for a model of (�B)�.First, since �B(�) 2 SB;�, we have:For all rule f : f 0g 2 B,�B(�) j= f and � 6j= neg(f 0) implies �B(�) j= g
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Authorization in Distributed Systems: A New Approach 35By Lemma 3, we get:For all rule f : f 0g 2 B,�B(�) j= f and ��[not(neg(f 0))] � T implies �B(�) j= gBy (�) and Lemma 4, we get:For all clause g  f ^ ��[not(neg(f 0))] 2 (�B)�,�B(�) j= f and �B(�) j= ��[not(neg(f 0))] implies �B(�) j= gwhich is the condition for �B(�) to be a model of (�B)�. 2Theorem B. Let B be a pure base and � a set of literals. Then� is an extension of B i� � is a model of �BProof. � is an extension of Bi� f de�nition of extension g� = �B(�)i� f Lemma 5 g� = M(�B)�i� f de�nition of model g� is a model of �B 2


